Text Categorization with Dynamic Input Length Using Deep Learning – A Review
نویسندگان
چکیده
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملText Categorization – A Review
With the growth of internet, the amount of digital information is growing exponentially day by day. This information may be structured or unstructured in nature. So, a need to convert unstructured text into structured text and to infer knowledge was felt As a result of this, the field of text mining emerged. Text documents may be in the form of online news articles, emails, scientific documents...
متن کاملArabic Text Categorization using Machine Learning Approaches
Arabic Text categorization is considered one of the severe problems in classification using machine learning algorithms. Achieving high accuracy in Arabic text categorization depends on the preprocessing techniques used to prepare the data set. Thus, in this paper, an investigation of the impact of the preprocessing methods concerning the performance of three machine learning algorithms, namely...
متن کاملLearning-Free Text Categorization
In this paper, we report on the fusion of simple retrieval strategies with thesaural resources in order to perform large-scale text categorization tasks. Unlike most related systems, which rely on training data in order to infer text-to-concept relationships, our approach can be applied with any controlled vocabulary and does not use any training data. The first classification module uses a tra...
متن کاملActive Learning with Committees for Text Categorization
In many real-world domains, supervised learning requires a large number of training examples. In this paper, we describe an active learning method that uses a committee of learners to reduce the number of training examples required for learning. Our approach is similar to the Query by Committee framework, where disagreement among the committee members on the predicted label for the input part o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2017
ISSN: 2321-9653
DOI: 10.22214/ijraset.2017.10263